Programme de colle n°5

semaine du 13 au 17 octobre

Notions vues en cours

Chapitre 7 – Applications

- Vocabulaire sur les applications : définition intuitive, ensembles de départ et d'arrivée, image d'un élément, antécédent d'un élément, application bien définie
- Étant donné une expression f(x), la fonction $f: x \mapsto f(x)$ représente une application de D_f dans \mathbb{R} , où D_f est l'ensemble de définition de f (ensemble des valeurs x telles que f(x) a un sens)
- Graphe d'une application, cas particulier des fonctions réelles
- Exemples d'applications : fonction indicatrice $\mathbb{1}_A$, application identité id_E , les fonctions usuelles, une suite réelle $(u_n)_{n\in\mathbb{N}}$ peut être vue comme une application de \mathbb{N} dans \mathbb{R}
- Image directe / réciproque d'un ensemble par une application : définition, notations f(A) et $f^{-1}(B)$, caractérisations, propriétés en lien avec \subset , \cup et \cap , partie stable par f
- Restriction d'une application f à un ensemble A ce que l'on note $f|_A$, prolongement d'une application
- Composition d'applications : définition, associativité, absence de commutativité, on dit que f et g commutent si $f \circ g = g \circ f$, composition avec l'identité
- Injection, surjection, bijection : définitions, caractérisation selon les solutions de l'équation (Eq_y) : f(x) = y d'inconnue x, l'application $f: E \to F$ est surjective ssi f(E) = F
- Si f et g sont injectives (resp. surjectives, resp. bijectives) alors $g \circ f$ est injective (resp. surjective, resp. bijective)
- Application réciproque (ou inverse) f^{-1} : définition, caractérisation avec l'existence d'une fonction g qui est l'inverse à gauche et droite, vu en TD: calcul de f^{-1} en résolvant f(x) = y
- Réciproque de $g \circ f$, réciproque de f^{-1} , l'ensemble $f^{-1}(B)$ représente deux ensembles égaux : l'image réciproque de B par f et l'image directe de B par f^{-1}
- Transformations du plan complexe : translations, homothéties de centre Ω et de rapport $k \in \mathbb{R}^*$ et rotations de centre Ω et d'angle $\theta \in \mathbb{R}$
- Similitude directe : définition, interprétation, point fixe, méthode pour la décomposer en les transformations ci-dessus

Chapitre 8 - Généralités sur les fonctions

- Fonction paire, fonction impaire, fonction T-périodique
- Déduction, à partir de la courbe \mathscr{C}_f , des courbes des fonctions $x \mapsto f(x) + k$, de $x \mapsto f(x-a)$, de $x \mapsto Af(x)$ ou encore de $x \mapsto f(\omega x)$
- Opérations sur \mathbb{R}^D : somme, différence, produit, quotient, |f|, λf avec $\lambda \in \mathbb{R}$. Relations =, \leq et < sur \mathbb{R}^D
- Composée de deux fonctions, définition et détermination de $D_{q \circ f}$

Les exercices devront en très grande majorité porter sur le chapitre 7.

Les questions de cours sont en page suivante

Questions de cours

Question Flash. Une question de cours sans démonstration choisie par l'examinateur, sur laquelle on doit passer un temps minimal. Cette question est choisie parmi celles ci-dessous, après les questions longues (chapitres 5 à 7).

Question Longue. Sauf mention contraire, les démonstrations sont à connaître.

1. Image directe et image réciproque : caractérisations (énoncés uniquement), démonstration de deux formules parmi les suivantes (au choix de l'examinateur) : Chapitre 7, Théorèmes 7.5, 7.9 et 7.10

(a)
$$A \subset A' \implies f(A) \subset f(A')$$

(d)
$$f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$$

(b)
$$B \subset B' \implies f^{-1}(B) \subset f^{-1}(B')$$
 *

(e)
$$f(A \cap A') \subset f(A) \cap f(A')$$

(c)
$$f(A \cup A') = f(A) \cup f(A')$$

(f)
$$f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$$

- * démonstration non faite en cours mais visible sur le polycopié en ligne
- 2. Définition de l'injectivité, de la surjectivité. Puis montrer que si f et g sont injectives alors $g \circ f$ est injective. Enfin, montrer que si f et g sont surjectives, alors $g \circ f$ est surjective. Chapitre 7, Définitions 7.15 et 7.18, Théorèmes 7.16 et 7.19
- 3. Sans démonstration : soit $f: E \to F$ et $g: F \to E$ vérifiant $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$. Que peut-on en déduire sur f? Avec démonstration : si $f: E \to F$ et $g: F \to G$ sont bijectives, que peut-on dire de f^{-1} et $g \circ f$? Chapitre 7, Théorèmes 7.26 et 7.27

Questions Flash au programme:

Chapitre 7:

- Soit $A \subset E$. Donner la définition de l'application indicatrice sur A.
- Soit $f: E \to F$ et $B \subset F$. Compléter : $x \in f^{-1}(B) \iff \dots$
- Soit $f: E \to F$ et $A \subset E$. Compléter : $y \in f(A) \iff \dots$
- Soit $f: E \to F$. Donner la définition de "f est injective" en termes de quantificateurs.
- ullet Idem que ci-dessus, ou bien avec "f est surjective", ou bien avec "f est bijective".
- Soit $f: E \to F$. Si f est injective, que peut-on dire de l'équation $(Eq_y): y = f(x)$ d'inconnue $x \in E$?
- Idem que ci-dessus, ou bien avec "f est surjective", ou bien avec "f est bijective".
- Compléter les formules : $(f^{-1})^{-1} = \dots$ et $(g \circ f)^{-1} = \dots$
- Rappeler la définition d'une similitude directe.

Chapitre 6:

• Soit z et z' deux complexes et λ un réel. Parmi les formules suivantes, compléter celles qui sont vraies (et seulement celles-là) :

2

$$\operatorname{Re}(z+z') = \dots \qquad \operatorname{Im}(zz') = \dots \qquad \operatorname{Re}(\lambda z) = \dots \qquad \operatorname{Im}(\overline{z}) = \dots$$

- Compléter les formules suivantes : $z + \overline{z} = \dots$ et $z \overline{z} = \dots$
- Compléter l'identité remarquable suivante : $|u+v|^2 = \dots$
- À quelle condition sur u et v a-t-on |u+v|=|u|+|v|?
- Donner les deux formules d'Euler.

- À quelle condition est-ce qu'un complexe z admet une forme trigonométrique ? Donner cette forme en précisant dans quels ensembles appartiennent chaque nouvelle variable.
- Mettre sous forme trigonométrique un complexe de la forme a et/ou de la forme $i\,b$ avec a et b deux réels choisis par l'examinateur.
- Si $re^{i\theta} = r'e^{i\theta'}$ (avec $r, r' \in \mathbb{R}_+^*$ et $\theta, \theta' \in \mathbb{R}$), que peut-on en déduire sur r, r', θ, θ' ?
- ullet Combien de racines carrées possède un nombre complexe ω ? Si z est une de ces racines, que peut-on dire ?
- On considère le polynôme $az^2 + bz + c$ avec $a, b, c \in \mathbb{C}$. Que vaut la somme de ses racines ? et le produit ?
- Soit $n \in \mathbb{N}^*$. Quelles sont les racines n-ièmes de l'unité ?
- Soit $z \in \mathbb{C}$. Écrire e^z sous forme trigonométrique.
- Soit $z \in \mathbb{C}^*$. À quelle condition sur $\arg(z)$ a-t-on $z \in \mathbb{R}_+^*$? et $z \in \mathbb{R}^*$?

Chapitre 5:

- Pour cosinus, sinus ou tangente : une formule à compléter parmi les formules de changement de quadran, d'addition, de duplication, au choix de l'examinateur.
- Compléter : $\cos a = \cos b \iff \dots$
- Compléter : $\sin a = \sin b \iff \dots$
- Compléter : $\tan a = \tan b \iff \dots$
- Quel est l'ensemble de définition de la fonction tangente ?